Find all the zeros of the polynomial.

$$
b^{3}-3 b^{2}-7 b+21
$$

Find all the zeros of the polynomial.

$$
3 r^{3}-6 r^{2}+4 r-8
$$

Special Factoring

$$
\begin{aligned}
& \text { 1. } x^{4}+27 x \\
& \text { 2. } x^{4}-8 x^{2}+16 \\
& \text { 3. } x^{4}+x^{2}-12
\end{aligned}
$$

Solve the inequality using a sign chart. Write answer in interval notation.

$$
-(x-2)(x+5)(x+8)(-2 x+7)<0
$$

Solve the inequality 5 using a sign chart. Write answer in interval notation.

Given: 2 (multiplicity 2) is a zero of the polynomial

$$
x^{4}-4 x^{3}+3 x^{2}+4 x-4 \leq 0
$$

$$
\begin{gathered}
\text { Add or subtract as } 6 \\
\text { indicated. Write answer } \\
\text { in standard form. } \\
(4+\sqrt{-4})-(3-\sqrt{-9}) \\
(-2+\sqrt{-12})+(3-\sqrt{-27})
\end{gathered}
$$

Multiply. Write answers in standard form.

$$
\begin{aligned}
& (2-3 i)(2+3 i) \\
& (6+2 i)(3-5 i)
\end{aligned}
$$

Simplify

-3
 $2 i$

$\frac{2+3 i}{3-4 i}$

Given $2 i$ is a zero, find

 the remaining zeros for the polynomial$$
f(x)=x^{4}+3 x^{3}-6 x^{2}+12 x-40
$$ the remaining zeros for the polynomial

$$
g(x)=x^{4}-81
$$

