\qquad

Finding Complex Zeros and Writing Polynomials from all Zeros

Find all the zeros of $f(x)$. Include any multiplicities greater than 1 . Classify the roots as real or imaginary.

1. $f(x)=2 x^{5}+3 x^{3}-5 x$
2. $f(x)=x^{3}-3 x^{2}+4 x-12$

Solve the polynomial equation by finding all roots.
3. $2 x^{3}-3 x^{2}+8 x-12=0$
4. $x^{4}-5 x^{3}+3 x^{2}+x=0$
5. Given the zero 2 i find the remaining zeros for the polynomial $f(x)=x^{4}-16$
6. Given the zero -3i find the remaing zeros for the polynomial $f(x)=x^{4}-2 x^{3}+x^{2}-18 x-72$
\qquad

Write the polynomial function in standard form with least degree and a leading coefficient of 1 that has the given zeros.
7. $0, \sqrt{5}$ and 2
8. $4 i, 2$ and -2
9. $1,-1$ (multiplicity 3), and $3 i$
10. 2 and $3-2 i$
11. Critical Thinking What is the least degree of a polynomial equation that has $3 i$ as a root with a multiplicity of 3 , and $2-\sqrt{3}$ as a root with multiplicity 2 ? Explain.

Review

1. Graph the following functions and state the domain, range, and end behavior
$f(x)=(x+2)^{3}(x-1)^{2}$
Zeros and Multiplicity:

End Behavior:

2. Write a function for the following graph

Selected Answers:

1. $x=2, x=\frac{2 \pm \sqrt{2} i}{3}$
2. $x=3, x= \pm 2 i$
3. $x=0, x=1, x=2 \pm \sqrt{5}$
4. $f(x)=(x-3)^{2}\left(x^{2}+9\right)$
5. $f(x)=\left(x^{4}+4\right)\left(x^{2}-2\right)(x+3)$ should have been a $7^{\text {th }}$ degree polynomial
